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The mechanical compression curves for the organic molecular crystals 1,1-diamino-2,2-dinitroethylene and
â-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (â-HMX) are calculated using the Hartree-Fock approxima-
tion to the solutions of the many-body Schro¨dinger equation for a periodic system as implemented in the
computer program CRYSTAL. No correction was made for basis set superposition error. The equilibrium
lattice parameters are reproduced to within 1% of reported experimental values. Pressure values on the isotherm
also agree well with reported experimental values. To obtain accurate results, the relaxation of all the atomic
coordinates as well as the lattice parameters under a fixed volume constraint was required.

Introduction

The theoretical prediction of equations of state is important
in many fundamental and practical problems, in fields as far
ranging as planetary science and military applications, where
experimental data may be difficult, expensive, or, in some cases,
impossible to obtain. In this regard, there is great interest in
computing the equation of state for a class of organic molecular
crystals which are the ingredients of materials often referred to
as energetic materials. While fits of experimental data to analytic
equations of state have achieved some success, ab initio
calculations hold the promise for calculating the equation of
state as well as a number of other chemical and physical
properties of these materials in cases in which experimental data
are not available or are not easy to obtain.

In recent years there has been a large body of research
devoted to the determination of optical, mechanical, and reactive
properties of materials from numerical solutions of the many-
body Schro¨dinger equation. In particular, the equation of state
of many solids has been determined in this manner: metals such
as iron, copper, and aluminum; elementary solids such as silicon;
metal oxides; ionic solids such as NaCl. Not much work has
been done on the equation of state of more complex materials
such as organic molecular crystals. Ab initio calculations for
organic crystals require large computational resources due to
both the typically large size of the molecules and the complexity
of the crystal structure. However, state of the art computer power
has progressed to the point where it becomes practical to study
these more complex materials. Unfortunately, there are still
many difficulties. The Hartree-Fock method, unless modified
with a specific correlation method, does not include electron
correlation energies beyond exchange correlation, and while
density functional theory (DFT) methods1,2 do include electron
correlation effects, they rely on functionals which only ap-
proximately describe the electronic density. Also, dispersion

forces, including van der Waals interactions, are significant in
molecular crystals. DFT methods treat them somewhat poorly,
and Hartree-Fock methods treat them not at all.

Most of the recent investigations performed at the ab initio
level use DFT methods and only a few studies have been based
on the Hartree-Fock method.

Miao et al.3 studied the molecular crystal structure and the
molecular dissociation of iodine, bromine, and chlorine under
high pressure with pseudopotential plane wave LDA (local
density approximation) and GGA (generalized gradient ap-
proximation) methods. They found that GGA overestimates the
interlayer distance but describes geometry parameters within
the plane much better than LDA. The calculated unit cell
volumes differ by 10-20% from experimental values, and the
bulk moduli obtained by LDA differ from experimental values
by 5-36%, and those obtained by GGA are within 5% of
experimental values.

Civalleri et al.,4 in a study of the structure of silica
polymorphs, using both Hartree-Fock and DFT methods with
a number of atom-centered Gaussian type basis sets,5 concluded
that geometrical parameters are “scarcely” sensitive to the
presence of polarization functions so that for the optimization
of large unit cells the Hartree-Fock method with a 6-21G basis
(Pople’s notation5) is good enough. However, determination of
the relative stability of the polymorphs required calculation of
the final energy with at least a 6-31G(d) basis.

Ojamǎe et al.,6 in one of the first calculations with a periodic
structure Hartree-Fock method for molecular crystals, deter-
mined the mechanical compression curve for ice VIII. (The term
“mechanical compression” is used to indicate that no vibrational
or electronic contributions are included. Thus, the “mechanical
compression curve” is not strictly equivalent to the “0 K
isotherm” which would include a zero point energy contribu-
tion.) They used a 6-31G** basis, optimized the atomic
coordinates and cell parameters, and found that the calculations
slightly overpredicted the pressure under compression. They also
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found that correction for basis set superposition errors7 did not
change the results significantly.

The mechanical hydrostatic compression of the energetic
molecular crystal, pentaerythritol tetranitrate, C(CH2ONO2)4,
was recently investigated by Gan et al.8 They used density
functional theory with the Perdew-Burke-Ernzerhof func-
tional9 and a 6-31G** Gaussian basis set with optimization of
atomic positions and fixed volume optimization of thec/a lattice
parameter ratio. They obtained results that agree remarkably
well with experiment, although they did not correct for basis
set superposition errors.

In this article, we describe a reasonably accurate calculation
of the mechanical compression curve for several organic
molecular crystals, including 1,1-diamino-2,2-dinitroethylene
(C2H4N4O4) andâ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo-
cine (C4H8N8O8). These materials are representative of the large
class of organic molecular crystals known as high explosives
because of their propensity for rapid explosive decomposition
under shock conditions.

Bemm and O¨ stmark10 determined the crystal structure of 1,1-
diamino-2,2-dinitroethylene, which they named FOX-7, to be
monoclinic with space groupP21/n and 4 molecules/unit cell.
They reported the values of the lattice parametersa ) 6.9410
Å, b ) 6.5690 Å,c ) 11.315 Å, andâ ) 90.55°. Gilardi11 has
also studied the structure of FOX-7 and found the valuesa )
6.9396 Å,b ) 6.6374 Å,c ) 11.3406 Å, andâ ) 90.611°.
The unit cell and molecular conformation are depicted in Figure
1. The irreducible asymmetric unit consists of the entire
molecule.

â-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (C4H8N8O8),
also known asâ-HMX, has a monoclinicP21/c structure with

2 molecules/unit cell.12 The cell parameters for theP21/c
structure,a ) 6.54 Å,b ) 11.05 Å,c ) 8.70 Å, andâ ) 124.3°,
were reported by Cady, Larson, and Cromer,13 who transformed
the measured values of Eiland and Pepinsky14 from theP21/n
structure. The unit cell and molecular unit are depicted in Figure
2. In this case, the irreducible asymmetric unit consists of half
the molecular unit (atoms 1-14 in the figure).

In previous work15 we reported the results of calculations
for FOX-7 using a rigid molecule approximation as well as
performing optimization of molecular structure at several levels
including optimization of the fractional atomic coordinates.

It turns out that the Hartree-Fock approximation with a
periodic structure code using a linear combination of atomic
orbitals (LCAO) Gaussian basis at the 6-21G level gives very
good results for this type of calculation. The Hartree-Fock
calculations reproduce the equilibrium lattice parameters within
about 1% and the corresponding unit cell volume within 3%.
Because no correction was made for basis set superposition
errors7 inherent with LCAO basis sets that are less than
complete, the good agreement for the equilibrium configuration
is probably the result of compensation for the absence of
dispersion forces by errors introduced from basis set truncation.
But it is interesting that this compensation of errors seems to
occur for a number of organic molecular crystals.

Optimization Procedure

To obtain results that can be compared to hydrostatic
compression experiments, it is necessary not only to optimize
the atomic coordinates of the molecules within the unit cell but
also to optimize the lattice parameters under a fixed volume

Figure 1. FOX-7 unit cell (a) and molecular unit (b). The entire molecule comprises the irreducible asymmetric unit.

Figure 2. â-HMX unit cell (a) and molecular unit (b). The irreducible asymmetric unit consists of atoms 1-14.
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constraint. The basic quantum calculations for a periodic
structure were performed with the CRYSTAL9816 computer
program, developed by the Theoretical Chemistry Group at the
University of Torino. More recent calculations were performed
with CRYSTAL03.17 All calculations with CRYSTAL were
performed with a 4× 4 × 4 Monkhorst-Pack18 grid in the
irreducible wedge of the Brillouin zone. The truncation criteria
for CRYSTAL’s calculation of the bielectronic integrals was
set as follows: overlap threshold for Coulomb integrals,
penentration threshold for Coulomb integrals, overlap threshold
for Hartree-Fock exchange integrals, and pseudo overlap for
the Hartree-Fock exchange series, all set to 10-7; second
pseudo overlap for the Hartree-Fock exchange series, set to
10-14. Optimizations of the atomic coordinates and lattice
parameters were done separately and iteratively. For the
calculations with CRYSTAL98, the atomic coordinates were
first optimized using Zicovich-Wilson’s LoptCG script,19 which
calls CRYSTAL98 to calculate the energy for each configura-
tion. The lattice parameters then were optimized under a fixed
volume constraint using a locally written program based on the
downhill simplex method of Nelder and Mead.20,21 This was
repeated until satisfactory convergence was achieved. In general,
the second repetition did not significantly improve the results,
most likely due to the presence of modes of displacement in
which the energy changes very little while the displacement
continues to increase. We have not identified or investigated
these modes in this work.

LoptCG is a flexible script, allowing the choice of the method
of steepest descents or the Polak-Ribiere conjugate gradient
method or some combination of these methods to find the
minimum energy.20,22LoptCG calculates derivatives numerically
and will automatically adjust the self-consistent field (scf)
convergence criterion to the precision required to calculate the
first derivative. These criteria ranged from a low of 10-6 hartree
for the root-mean-square change in energy eigenvalues and 10-5

hartree for the change in absolute value of the total energy during
one scf cycle to a high of 10-15 hartree and 10-12 hartree,
respectively. It also takes advantage of the ability of CRYSTAL
to start an scf calculation with the initial guess taken from
density matrixes calculated on a previous run. In the calculations
reported here, the conjugate gradient method was used exclu-
sively to optimize the fractional coordinates, with a convergence
criterion of 10-3 hartree in the gradient norm.

The simplex optimization routine, SOPT, which was used
for the lattice parameter optimization under a fixed volume
constraint, also calls CRYSTAL to determine the energy of a
configuration and has the advantage of not requiring the
calculation of derivatives. SOPT also starts successive energy
computations from the density matrix of the previous computa-
tion but does not alter CRYSTAL’s scf convergence tolerances.
The lattice parameter optimization was considered converged
when the root-mean-square of the lattice parameter change
during one iteration was less than 10-5 Å.

CRYSTAL uses a set of basis functions composed of linear
combinations of Gaussian type atomic orbitals. Kunz23 deter-
mined that a modified 6-21G split valence basis set affords a
good compromise between accuracy of the computations and
required computer resources in the case of the energetic solids
RDX (cyclo-trimethylenetrihydramine) and TATB (1,3,5 tri-
amino-2,4,6 trinitrobenzene). Our own tests confirm this, and
we have chosen to utilize this basis set in the computations
reported here. As these basis functions are optimized for isolated,
nonperiodic systems, scaling factors are introduced that reduce
the range of the outer orbitals to better adapt them for use in

periodic systems. The scaling factors (1.05 for C, N, H; 1.00
for O) for Hartree-Fock computations were determined by
minimizing the energy in test calculations and are similar to
values obtained previously.23,24 No correction for basis set
superposition error was made as there is disagreement in the
literature as to the efficacy of the principal method of correction,
the counterpoise method of Boys and Bernardi,25 in producing
reliably more accurate results than no correction at all. It does
appear, however, that there is some basis set superposition error
which tends to compensate for the absence of van der Waals
forces.

FOX-7 Mechanical Compression

The energy along the mechanical compression curve for
FOX-7 is shown in Figure 3 as a function of mean linear
expansionλ ) (V/V0)1/3. In the figure, a linear expansion of 1
corresponds to Gilardi’s experimental values for the lattice
parameters and an associated unit cell volumeV0 of 522 Å3.
For comparison, the energy calculated under uniform compres-
sion of the lattice with the assumption of rigid molecules is
shown. (The rigid molecule structure is that for which the 13
bond lengths have been optimized for lattice parameters equal
to 99% of Gilardi’s parameters.) A considerable improvement
in the energy occurs when the molecules are no longer treated
as rigid and the fractional atomic coordinates are relaxed. In
this relaxation, only the coordinates of the 14 irreducible atoms
in the unit cell are considered, preserving the symmetry of the
space group. A further, small but significant, improvement in
the energy occurs when the lattice parameters,a, b, c, andâ,
are relaxed under a fixed volume constraint, where the volume
V ) λ3V0. Relaxation under the fixed volume constraint
corresponds to true hydrostatic compression.

The experimental observations10,11are done at room temper-
ature (300 K). The thermal expansion coefficient for FOX-7
has not yet been experimentally determined but was calculated
by Sorescu et al.,26 using molecular dynamics. They determined
an average linear expansion coefficient of 6.8× 10-5 K-1 at
273 K. A similar material, TATB (C6H6N6O6), has a measured
linear thermal expansion coefficient27 of the order of 5× 10-5

K-1 at 300 K. The thermal expansion decreases to zero at 0 K.
Thus, the correction for the temperature difference should
amount to about 1%. This would shift the calculated equilibrium
point up to 100.5% of Gilardi’s value.

Figure 3. Energy along the 0 K isotherm for FOX-7. The squares
show the energy in the rigid molecule approximation, the circles show
the energy after the atomic coordinates have been relaxed, and the
triangles show the energy after a further relaxation of the lattice
parameters under the fixed volume constraint.
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The pressure-volume dependence is calculated from the
usual thermodynamic relation

whereF is the Helmholtz free energy. At 0 K, this reduces to
P ) -dE0/dV, whereE0 is the energy along the 0 K isotherm.
The pressure, calculated from the energy curves in Figure 3, is
shown in Figure 4, along with experimental data reported by
Peiris et al.28 It can be seen that the rigid molecule, uniform
compression calculations predict much too high a pressure, while
the calculations in which the atomic coordinates and lattice
parameters have been relaxed are in excellent agreement. The
agreement, in particular near the equilibrium (zero pressure)
state, may be accidental due to cancellation of errors; while the
Hartree-Fock method does not reproduce dispersion forces,
including the van der Waals forces, this may be compensated
by basis set superposition error arising from basis set truncation.

To make the comparison, it is necessary to take into account
the fact that the experimental data corresponds to room tem-
perature, about 300 K. Currently work is underway to determine
the equation of state for nonzero temperatures. At present there
is limited theoretical information and no experimental data for
thermal properties of FOX-7 but some estimates are possible.
The pressure difference may be determined from the thermo-
dynamic identity

whereF is the density,cV is the specific heat at constant volume,
andγ is the Grüneisen parameter. The Gru¨neisen parameter may
be determined from the relation

whereR is the volume coefficient of thermal expansion andκT

is the isothermal bulk modulus. With a density of 1900 kg/m3,
assuming a specific heat of 1000 J/(kg K) and a Gru¨neisen

parameter of 1.0, the pressure at 300 K would be about 0.6
GPa greater than the pressure at 0 K. This is very consistent
with the results shown in Figure 4.

The calculated bulk modulus is shown in Figure 5, along with
the zero pressure, room temperature range of values of the bulk
modulus determined experimentally by Peiris et al.28 The
calculated value is a little smaller than the measured value.
Further, the measured value at room temperature is presumably
smaller than the 0 K value, but we do not know by how much
at this point. If we assume that the room-temperature value of
the bulk modulus is not much smaller than the 0 K value, then
the calculated value agrees well with the experimental value.
However, this may not be a good assumption. There is some
evidence that the 0 K value of the bulk modulus could be as
much as 50% larger than the room temperature (300 K) value
according to Monte Carlo calculations for RDX (C3H6N6O6)
reported by Sewell and Bennett.29 Also shown in the figure are
values of bulk modulus under compression obtained by dif-
ferentiating the experimental pressures reported by Peiris et al.
Although there is a large amount of scatter produced by the
numerical differentiation of the data, it is seen that there is
approximate agreement between the data and the calculation.

Figure 4. Pressure along the 0 K isotherm for FOX-7. The squares
show the pressure in the rigid molecule approximation, the circles show
the pressure after the atomic coordinates have been relaxed, and the
downward pointing triangles show the pressure after a further relaxation
of the lattice parameters under the fixed volume constraint. The
calculated equilibrium volume is 75.8 cm3/mol. The upward pointing
triangles show the experimental data of Peiris et al.28

P ) -(∂F(V,T)
∂V )

T
(1)

(∂P
∂T)V

) FcVγ (2)

γ )
RκT

FcV
(3)

Figure 5. Bulk modulus along the 0 K isotherm for FOX-7. The
squares show the bulk modulus in the rigid molecule approximation,
the circles show the bulk modulus after the atomic coordinates have
been relaxed, and the downward pointing triangles show the bulk
modulus after a further relaxation of the lattice parameters under the
fixed volume constraint. The calculated equilibrium volume is 75.8
cm3/mol. The upward pointing triangles represent the bulk modulus
obtained from the numerically differentiated pressure data of Peiris et
al.28 while the two diamond shaped points show the range of their
reported bulk modulus values at atmospheric pressure.

Figure 6. C-C and C-N bond lengths for FOX-7 optimized along
the 0 K isotherm.
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Bond lengths for the optimized molecular structure are shown
in Figures 6 and 7 as a function of the effective linear expansion.
Most of the bonds increase in length or increase and level off
with expansion. Some bonds, notably the N9-O bonds, increase
in length with compression, and one bond (C4-N9) has a strong
decrease in length with compression. The sensitivity of this bond
length to compression of the lattice is consistent with the
observation that splitting of the NO2 group is the first step in
the explosive decomposition of this material. The calculated
lattice parameters, pressure, and bulk modulus are summarized
in Table 1. Figure 8 shows the calculated lattice parameters
compared to those measured by Peiris et al.28 By plotting the

parameters vs unit cell volume, focus is placed on the anisotropic
variation with hydrostatic compression, showing a reasonably
good correlation between the calculated and experimental
values.

â-HMX Mechanical Compression

The mechanical compression curve forâ-HMX was calcu-
lated using the same procedure that was used for FOX-7. Figure
9 shows the energy as a function of mean linear expansion. In
this case, the fixed volume constraint lattice parameter optimiza-
tion makes only a very small improvement in the energy. An
unconstrained optimization to find the absolute minimum is
illustrated in Figure 10. Two paths are shown. In the first path,
the experimentally determined atomic coordinates are first
optimized, with the lattice parameters fixed at the experimentally
determined values. This is followed by an unconstrained lattice
parameter optimization. In the second path, the lattice parameters

Figure 7. N-O and N-H bond lengths for FOX-7 optimized along
the 0 K isotherm.

Figure 8. Calculated vs experimentally measured lattice parameters
for hydrostatic compression of FOX-7.

TABLE 1: Calculated Lattice Parameters, Pressure, and
Bulk Modulus as a Function of Unit Cell Volume for FOX-7

λ V (Å3) a (Å) b (Å) c (Å) â (deg) P (GPa) B (GPa)

0.92 406.73 6.506 5.920 10.560 90.55 11.05 94.0
0.93 420.14 6.547 6.016 10.667 90.78 8.27 77.8
0.94 433.84 6.626 6.113 10.711 90.58 6.02 65.7
0.95 447.83 6.686 6.178 10.843 90.61 4.06 63.3
0.96 462.12 6.758 6.266 10.914 90.53 2.03 49.2
0.97 476.72 6.829 6.364 10.970 90.69 0.97 25.3
0.98 491.61 6.893 6.437 11.080 90.50 0.45 19.9
0.99 506.81 6.947 6.522 11.188 90.49-0.24 18.4
1.00 522.33 7.003 6.598 11.306 90.52-0.67 12.1
1.01 538.16 7.057 6.669 11.435 90.56-0.98 10.0
1.02 554.30 7.075 6.790 11.539 90.55-1.27 9.8

Figure 9. Energy vs effective linear expansion forâ-HMX. The
squares show the energy calculated in the rigid molecule approximation
where the molecule has the experimentally determined geometry. The
open squares show the energy in the rigid molecule approximation
where the molecule has the optimized geometry at values of the lattice
parameters equal to 99% of the experimentally measured lattice
parameters. The circles show the energy after relaxing the atomic
coordinates, and the triangles show the energy after a subsequent lattice
parameter relaxation at fixed volume.

Figure 10. Illustration of two optimization paths for calculating
equilibrium configuration forâ-HMX. The diamonds with the dot in
the center illustrate the path in which the atomic coordinates are first
optimized starting from the experimental configuration, followed by
an (unconditional) optimization of the lattice parameters. The open
diamonds show the path in which the lattice parameters are optimized
first, starting from the experimental configuration, followed by an
optimization of the atomic coordinates, and then followed by another
lattice parameter optimization.

Mechanical Compression of Two Molecular Crystals J. Phys. Chem. A, Vol. 110, No. 15, 20065177



are fixed at 99% of the experimental values, while the atomic
coordinates are optimized. This is followed by an unconstrained
lattice parameter optimization. Both paths lead to approximately
the same result; the calculated equilibrium 0 K lattice parameters
are a little less than 1% smaller than the measured 300 K lattice
parameters. Taking account of the thermal expansion between
0 and 300 K, of the order of 1.5%, this puts the calculated result
about 0.5% larger than the experimental result.

The calculated pressure is compared in Figure 11 with
experimental results of Peiris et al.30 and Yoo and Cynn.31 The
calculated isotherm lies below the 300 K data of Peiris et al.
but above the 300 K data of Yoo and Cynn. Also shown in the
figure is a fit of the relationP ) a(V - V0) - b ln(V/V0) to the
data of Peiris et al. This relation arises from the assumption
that the bulk modulus is a linear function of volume,B ) b -
aV, a relation that is suggested by the plot of calculated bulk
modulus shown in Figure 12. The experimental value of the
bulk modulus is reasonably consistent with the calculated value,
at least under equilibrium conditions.

The C-N, N-N, and N-O bond lengths for the optimized
â-HMX structure are plotted vs effective linear expansion in
Figure 13. Again, the N-N bonds undergo the largest change
with compression. The N6-O10 and N6-O11 bonds appear
to reach a maximum length atλ ) 0.98 and 0.97, respectively.
The C-H bonds, not shown here, increase in length with
expansion by about 1% over the rangeλ ) 0.92-1.02. The
calculated lattice parameters, pressure, and bulk modulus are
summarized in Table 2.

Discussion and Conclusions

Hartree-Fock calculations give good results for the 0 K
isotherm for the organic molecular crystals 1,1-diamino-2,2-
dinitroethylene andâ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tet-
razocine when the entire structure is relaxed under a fixed
volume constraint. Calculations recently performed for solid
nitromethane (orthorhombic,P212121) also give good results.
They yield the equilibrium lattice parametersa ) 5.0877 Å,
b ) 6.2385 Å, andc ) 8.4270 Å, with a unit cell volume of
267.5 Å3. This is to be compared to the experimental values at
4.2 K, a ) 5.1832 Å,b ) 6.2357 Å, andc ) 8.5181 Å, with
a unit cell volume of 275.3 Å3, reported by Trevino, Prince,
and Hubbard.32 The calculated unit cell volume is 3% lower
than the measured value.

An interesting result of the atomic coordinate optimizations
is that, for both FOX-7 andâ-HMX, the bond length that
changes most under compression is the bond that is thought to
be the initial bond to break in the decomposition of the material.

Several DFT methods available in CRYSTAL98 were tried
including the GGA method of Perdew and Wang33 and
Becke’s34 three-parameter hybrid method using the correlation

Figure 11. Calculated pressure vs volume on the 0 K isotherm for
â-HMX compared to experimental data of Peiris et al.30 (upward
pointing triangles) and Yoo and Cynn31 (diamonds). The squares show
the pressure calculated in the rigid molecule approximation, the
downward pointing triangles show the pressure for the fully optimized
structure, and the heavy solid line is a fit to the experimental data of
Peiris et al. as explained in the text.

Figure 12. Bulk modulus vs volume on the 0 K isotherm forâ-HMX.
The squares show the bulk modulus calculated in the rigid molecule
approximation, the downward pointing triangles show the bulk modulus
for the fully optimized structure, and the heavy solid line is a fit to the
experimental data of Peiris et al. as explained in the text.

Figure 13. C-N, N-N, and N-O bond lengths forâ-HMX optimized
along the 0 K isotherm.

TABLE 2: Calculated Lattice Parameters, Pressure, and
Bulk Modulus as a Function of Unit Cell Volume for
â-HMX

λ V (Å3) a (Å) b (Å) c (Å) â (deg) P (GPa) B (GPa)

0.92 404.44 6.052 10.055 8.058 124.43 10.70 61.4
0.93 417.77 6.128 10.099 8.209 124.68 8.67 63.8
0.94 431.39 6.159 10.289 8.225 124.14 6.58 62.7
0.95 445.31 6.241 10.444 8.245 124.04 4.66 56.0
0.96 459.52 6.302 10.543 8.340 123.97 3.04 45.6
0.97 474.03 6.337 10.649 8.443 123.70 1.81 35.0
0.98 488.84 6.380 10.761 8.501 123.11 0.87 29.0
0.99 503.96 6.469 10.868 8.553 123.06 0.03 24.1
1.00 519.39 6.521 10.987 8.618 122.73-0.60 18.4
1.01 535.12 6.520 11.194 8.627 121.81-1.07 14.6
1.02 551.18 6.614 11.291 8.667 121.63-1.46 11.8
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energy of Lee, Yang, and Parr.35 In addition, calculations with
pure HF exchange energy coupled with Lee, Yang, and Parr
correlation energy were performed. All DFT calculations gave
similar results, underpredicting the equilibrium volume by 10-
15%. When DFT PWGGA calculations for FOX-7 were
corrected for basis set superposition error with the counterpoise
method, the equilibrium volume was slightly overpredicted (but
within 1%). However, the bulk modulus in compressed states
was considerably underpredicted (by about 20 GPa at 88% of
the equilibrium volume).

As for why the Hartree-Fock method gives such good results
despite the absence of electron correlation energy and no
treatment of van der Waals interactions, we believe that the
basis set superposition error produces an artificial binding, which
nearly compensates for the absent van der Waals forces. Also,
although van der Waals interactions are important in molecular
crystals, they are most significant for expanded states. For the
moderate to highly compressed states we are dealing with here,
the van der Waals forces make a relatively smaller contribution.
In the case of FOX-7 with its layered structure, there is strong
hydrogen bonding within the layers, reducing considerably the
impact of the van der Waals forces within the layers. There is
also some evidence for hydrogen bonding inâ-HMX36 although
it is probably a small effect in this case. As for the correlation
energy, the DFT calculations indicate that it has only a small,
smooth, monotonic, and nearly linear variation over the range
of compressions studied, therefore making a negligible contribu-
tion to the pressure-volume relation, except for a negative
pressure contribution which drives the equilibrium volume to
values approximately 10% less than experimental values. While
the results reported here reproduce the behavior of these
molecular crystals under hydrostatic compression, we are
exploring here only a small part of the potential energy surface
and it would be unwise to draw any inference concerning
binding energies and chemical reactivity generally, where basis
set truncation leading to basis set superposition error plays a
significant role. The effect of basis set superposition error
corrections on both Hartree-Fock and DFT calculations are
being investigated and will be reported in future communica-
tions.

Finally, the comparison with experimental data in the case
of FOX-7 andâ-HMX depends on estimates of differences
between the 0 K isotherm and the 300 K isotherm. Work is
now underway to calculate the fullT > 0 equation of state by
constructing the free energy from the phonon frequency
spectrum of the crystal.
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